
Using Eclypses MTE to Secure Kubernetes

The Challenge: Security Risks in Kubernetes Deployments
Kubernetes (K8s) is the go-to platform for containerized applications, but it introduces
significant security risks—especially when sensitive data, API communications, and multi-tenant
environments are involved.

1. Data Exposure in API & Microservices – Kubernetes relies on APIs for inter-service
communication, making API breaches a top attack vector.

2. Insider Threats & Credential Theft – Compromised Kubernetes secrets, API keys,
or service accounts can grant attackers broad access

3. Sidecar & Pod Eavesdropping – Malicious containers within a cluster can intercept
unencrypted traffic between services.

4. Compliance Complexity – HIPAA, PCI DSS, and GDPR require strict data security
controls that traditional encryption does not fully address.

The Solution: Eclypses MTE for Kubernetes Security

Unlike traditional TLS encryption and secret management, Eclypses MTE (MicroToken Exchange)
eliminates data exposure in Kubernetes environments by securing data at the application layer—before it
enters the cluster network.

• Zero Data Exposure in Kubernetes APIs & Services – MTE replaces sensitive data with one-time-
use, non-reversible microtokens before transmission, ensuring that even if intercepted, data is
useless.

• No Encryption Key Management – MTE eliminates the need for Kubernetes Secrets, Key Vaults,
or complex key rotation policies.

• Secures Pod-to-Pod & Service-to-Service Communications – Protects microservice traffic
without adding network-layer encryption overhead.

• Prevents Multi-Tenant Data Leaks – Even if an attacker gains access to a tenant’s namespace,
MTE ensures that no sensitive data is exposed across clusters.

• Works Seamlessly with Kubernetes Components – Can be deployed as a sidecar, API gateway
integration, or directly into application workloads.

How Eclypses MTE Integrates into Kubernetes

Kubernetes Component Traditional Security Issues MTE Security Advantage

Kubernetes API Server API keys can be stolen, exposing cluster data MTE replaces API data with microtokens

Pod-to-Pod
Communication

Inter-container traffic can be intercepted MTE prevents data leaks between pods

Ingress & Egress Traffic TLS encrypts, but keys can be compromised No encryption keys needed, eliminating key risk

Service-to-Service Calls API requests between services are vulnerable MTE ensures data is never exposed

Multi-Tenant
Namespaces

One tenant’s breach can expose
shared resources

MTE isolates data per tenant
with zero exposure

Use Cases: Securing Kubernetes with MTE

1. Eliminates Data Exposure Risks – No sensitive data is exposed at any point in Kubernetes communication.

2. Simplifies Compliance – Meets HIPAA, PCI DSS, GDPR, and CMMC without complex encryption key management.

3. Works Across Any Kubernetes Deployment – Supports Azure Kubernetes Service (AKS), Amazon EKS, Google
Kubernetes Engine (GKE), and on-prem K8s clusters.

4. Faster Performance & Lower Latency – No encryption/decryption processing overhead—MTE operates in real-time

Business & Security Benefits of Using MTE in Kubernetes

Using Eclypses MTE to Secure Kubernetes

1. Protecting Kubernetes API Requests

Problem: API tokens and service accounts are often targeted, allowing attackers to manipulate cluster resources.

MTE Solution: MTE tokenizes API payloads, ensuring no raw data is exposed—even if API traffic is intercepted.

2. Securing Microservices in Kubernetes
Problem: Pod-to-pod communication within a Kubernetes cluster is vulnerable to eavesdropping and lateral movement attacks.

MTE Solution: MTE prevents sensitive data from being exposed between services, eliminating pod-level data
leakage risks.

3. Enhancing Kubernetes Security for Multi-Tenant Environments

Problem: In a shared Kubernetes cluster, tenants may accidentally or maliciously access each other’s data.

MTE Solution: Even if a namespace is breached, MTE ensures that data remains unusable across tenants.

DocId: ECLYPSES-1532395320 - 533 Ver: 2.0

